Understanding Ecological Responses to the 1980 Eruption of Mount St. Helens

نویسندگان

  • Virginia H. Dale
  • Frederick J. Swanson
  • Charles M. Crisafulli
چکیده

The ecological and geological responses following the May 18, 1980, eruption of Mount St. Helens are all about change: the abrupt changes instigated by geophysical disturbance processes and the rapid and gradual changes of ecological response. The explosive eruption involved an impressive variety of volcanic and hydrologic processes: a massive debris avalanche, a laterally directed blast, mudflows, pyroclastic flows, and extensive tephra deposition (Lipman and Mullineaux 1981; Swanson and Major, Chapter 3, this volume). Subsequent, minor eruptions triggered additional mudflows, pyroclastic flows, tephra-fall events, and growth of a lava dome in the newly formed volcanic crater. These geological processes profoundly affected forests, ranging from recent clear-cuts to well-established tree plantations to natural stands, as well as meadows, streams, and lakes. This book focuses on. responses of these ecological systems to the cataclysmic eruption on May 18, 1980. Initial ecological response to the 1980 eruption was dramatic both in the appearance of devastation (Figure 1.1) and in subsequent findings that life actually survived by several mechanisms in many locations (del Moral 1983; Halpern and Harmon 1983; Andersen and MacMahon 1985a and 1985b; Franklin et al. 1985; Crawford 1986; Adams et al. 1987; Zobel and Antos 1986, 1992). Ecological change occurred as a result of survival, immigration, growth of organisms, and community development. The pace of these biological responses ranged from slow to remarkably rapid. In addition, subsequent physical changes to the environment influenced biological response through weathering of substrates and by secondary disturbances, such as erosion, that either retarded or accelerated plant establishment and growth, depending on local circumstances. The net result of secondary physical disturbances was increased heterogeneity of developing biological communities and landscapes. The sensational volcanic eruption of Mount St. Helens initially dwarfed the ecological story in the eyes of the public and the science community; but as the volcanic processes quieted, ecological change gained attention. The variety of disturbance effects and numerous interactions between ecological and geological processes make Mount St. Helens an extremely rich environment for learning about the ecology of volcanic areas and, more generally, about ecological and geophysical responses to major disturbances. More than two decades after the primary eruption, geophysical and ecological changes to the Mount St. Helens landscape have become so intertwined that understanding of one cannot be achieved without considering the other. The 1980 eruption of Mount St. Helens and its ecological aftermath are the most studied case of volcanic impacts on ecological systems in history (Table 1.1). Ecological research at other volcanoes has often considered ecological responses based on observations made several years, decades, or even centuries after the eruption. In contrast to eruptions of some other volcanoes, lava surfaced only in the crater of Mount St. Helens; and most of the disturbance processes left deposits of fragmented volcanic rocks through which plants can easily root and animals can readily burrow. Furthermore, studies at other volcanoes typically investigated only one group of organisms (e.g., plants) and one type of volcanic process or deposit, which contrasts to the diversity of terrestrial and aquatic life and volcanic processes and deposits considered in this book. Since the 1980 eruption of Mount St. Helens, analyses of ecological response to eruptions of other volcanoes and to ecological disturbance, in general, have made important advances. Ecological responses to other volcanic eruptions have been the subject of retrospective investigations of historic eruptions [e.g., Krakatau in Indonesia (Thornton 1996)] and analyses of responses to recent eruptive activity [e.g., Hudson volcano in Argentina (Inbar et al. 1995)]. More broadly, the field of disturbance ecology has blossomed through development of theory (Pickett and White 1985; White and Jentsch 2001; Franklin et al. 2002); intensive study of recent events, such as the Yellowstone fires of 1988 (Turner et al. 1998) and Hurricane Hugo (Covich and Crowl 1990; Covich et al. 1991; Covich and McDowell 1996); and consideration of effects of climate change on disturbance regimes (Dale et al. 2001). Lessons

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Overview of Ecological Responses to the Eruption of Mount St . Helens : 1980 – 2005

The sensational 1980 eruption ofMount St.Helens and the subsequent ecological responses are the most thoroughly studied volcanic eruption in theworld. The posteruption landscapewas remarkable, and nearly a quarter century of study has provided awealth of information and insight on a broad spectrum of ecological and physical responses to disturbance. The eruption and its effects on ecological an...

متن کامل

The mount st. Helens volcanic eruption of 18 may 1980: minimal climatic effect.

An energy-balance numerical climate model was used to simulate the effects of the Mount St. Helens volcanic eruption of 18 May 1980. The resulting surface temperature depression is a maximum of 0.1 degrees C in the winter in the polar region, but is an order of magnitude smaller than the observed natural variability from other effects and will therefore be undetectable.

متن کامل

Remote Sensing of Vegetation Responses During the First 20 Years Following the 1980 Eruption of Mount St. Helens: A Spatially and Temporally Stratified Analysis

The variety of disturbance mechanisms involved in the 1980 eruption of Mount St. Helens (e.g., heat, burial, and impact force) and the resulting diversity of vegetation responses have provided abundant opportunities for disturbance-zone-specific research (Frenzen 1992; Frenzen et al. 1994). As evidenced by the research reported in this volume, tremendous amounts of knowledge can be acquired fro...

متن کامل

Calculating Change Curves for Multitemporal Satellite Imagery: Mount St. Helens 1980–1995

We developed and tested a method for analyzing multiINTRODUCTION temporal satellite imagery using change curves. The The recovery of vegetation following the 1980 eruption method is flexible and allows an analyst to extract specific of Mount St. Helens in southwest Washington has been change parameters from the curves depending on the reone of the major ecological stories of the Pacific Northse...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012